Service

Axial Piston Variable Double Pump A20VG/A22VG

RA 93220-A/10.10 1/28 Replaces: 05.09

Data sheet

Series 11

Sizes 45 A20VG Nominal pressure 4350 psi (300 bar) Maximum pressure 5100 psi (350 bar) A22VG Nominal pressure 5100 psi (350 bar) Maximum pressure 6100 psi (420 bar) Closed circuit

Contents

Ordering code for standard program	2
Technical data	4
HW - Proportional control hydraulic, mechanical servo	9
EP – Proportional control electric	11
HT – Hydraulic control, direct controlled	13
ET – Electric control, direct controlled	14
DA control valve, fixed setting	15
Dimensions size 45	16
Through drive dimensions	20
Overview of attachments	21
Combination pumps	22
Boost pump	22
High-pressure relief valves	22
Mechanical stroke limiter	23
Ports X_3 and X_4 for stroking chamber pressure	23
Sensors	24
Installation situation for coupling assembly	25
Connector for solenoids	25
Installation instructions	26
General instructions	28

Features

- Variable double pump with two axial piston rotary groups with swashplate design for hydrostatic drives in closed circuit
- The flow is proportional to the drive speed and displacement.
- The flow increases as the angle of the swashplate is adjusted from zero to its maximum value.
- Flow direction changes smoothly when the swashplate is moved through the neutral position.
- Only one shared port for case drain fluid for both circuits
- Service line ports alternatively left or right (viewed from drive shaft)
- Compact design for tight installation conditions

Note

Only for series no smaller than 200 units per year.

Please consult us regarding smaller series.

0

11

Α

Ordering code for standard program

	G	045							/	11	Α		Ν	B2					Α	
01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20

Axial piston unit

01	Swashplate design, variable	Nominal pressure 4350 psi (300 bar), maximum pressure 5100 psi (350 bar)	A20V
01		Nominal pressure 5100 psi (350 bar), maximum pressure 6100 psi (420 bar)	A22V

Operation mode

(2 Double pump, closed circuit	G	
		_	-

Size (NG)

03	Theoretical displacement see table of values on page 7	in cm ³	045	
		in in ³ /rev	2.81	l

Control device

	Proportional control hydraulic	without neutral position switch	•	HW1
	mechanical servo, hexagon shaft	with neutral position switch	•	HW7
	Proportional control electric	U = 12 V DC	•	EP1
04		U = 24 V DC	•	EP2
	Hydraulic control, direct controlled		•	HT1
	Electric control, direct controlled,	U = 12 V DC	0	ET1
	two pressure reduction valves (DRE) per circuit	U = 24 V DC	0	ET2

Connector for solenoids¹⁾

05	Without	0	
05	DEUTSCH - molded connector, 2-pin – without suppressor diode	Р	

Swivel angle indicator

06	Without						
00	Electric swivel angle sensor ²⁾	R					

Auxiliary function 1 (pilot pressure port)

	With ports X_1 and X_2	1
07	With ports X_3 and X_4	3
	With ports X_1 , X_2 and X_3 , X_4	4
	· · · · · · · · · · · · · · · · · · ·	

Auxiliary function 2 (mechanical stroke limiter) Without

08	With mechanical stroke limiter on one side, externally variable, on the same side as the service line ports	Е
	With mechanical stroke limiter on both sides, externally variable	М

	DA control valve	HW	HT	EP	ET	
09	Without	•	•	•	О	0
09	With DA control valve fixed setting	0	•	0	-	1

Series

10 Series 1, Index 1

Version of port and fixing threads

11 ANSI

• = Available O = On request - = Not available

1) Connectors for other electric components can deviate.

2) See page 24

Ordering code for standard program

	G	045							/	11	Α		Ν	B2					Α	
01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20

Direction of rotation

12	Viewed from drive shaft	clockwi	se		R	
		counter-clockwise				
	Seals					
13	NBR (nitrile-caoutchouc), shaft seal ring in FKM (fluor-caoutch	ouc)			N	
	Mounting flange					
14	SAE J744	101-2 (B)		B2	
	Drive shaft					
15	Splined shaft ANSI B92.1a-1976	1 in	15T 16/32DP	0	S5	
15		1 1/4 in	14T 12/24DP	•	S7	
	Service line ports					
16	SAE threaded ports A and B, left (viewed from drive shaft)				3	
10	SAE threaded ports A and B, right (viewed from drive shaft)				4	

Boost pump

17	Without boost pump (standard) ³⁾	U	
17	With boost pump ³⁾	F	

Through drive

	Flange SAE J744			Coupling for splined sh	aft ⁴⁾		
		Mounting	g variant				
	Diameter	Symbol ⁵	Designation	Diameter	Designation		
1	B Without					0	0000
	82-2 (A)	⊶	A2	5/8 in 9T 16/32DP	S2	•	A2S2
	101-2 (B)	0-0	B2	7/8 in 13T 16/32DP	S4	•	B2S4
				1 in 15T 16/32DP	S5	•	B2S5

High-pressure valves			Setting range			
10	With high-pressure relief valve,	without bypass	3600 to 4650 psi (250 to 320 bar) (A20VG)]	
	direct controlled	ct controlled	3600 to 5650 psi (250 to 390 bar) (A22VG)	A		

Standard / special version

	Standard version		-0
		combined with attachment part or attachment pump	-K
20	Special version		-S
		combined with attachment part or attachment pump	-Т

Note

This unit is only available "without pressure cut-off". Short designation X on a feature refers to a special version not covered by the ordering code.

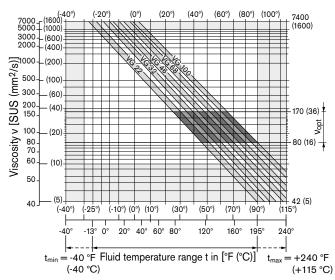
• = Available O = On request - = Not available

 $\ensuremath{\scriptscriptstyle 3}\xspace$ For pressure filtration, the feed is performed via port G.

Pressure or suction filtration to be provided by the customer.

4) Coupling for splined shaft acc. ANSI B92.1a-1976

5) Order of fixing bores viewed from through drive


Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The A20VG/A22VG variable pump is not suitable for operation with HFA, HFB and HFC hydraulic fluid. If HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals must be observed. Please contact us.

When ordering, indicate the hydraulic fluid that is to be used.

Selection diagram

Viscosity and temperature

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit the circuit temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}), see shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °F (X °C), an operating temperature of 140 °F (60 °C) is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, is always higher than the circuit temperature. At no point of the component may the temperature be higher than 240 °F (115 °C), however. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

	Viscosity [SUS (mm²/s)]		Comment
Transport and storage		$\begin{array}{l} T_{min} \geq -58 \ ^{o}F \ (-50 \ ^{o}C) \\ T_{opt} = +41 \ ^{o}F \ to \ +68 \ ^{o}F \\ (+5 \ ^{o}C \ to \ +20 \ ^{o}C) \end{array}$	up to 12 months with standard factory preservation up to 24 months with long-term factory preservation
(Cold) start-up ¹⁾ $v_{max} = 7400$ (1600)		T _{St} ≥ -40 °F (-40 °C)	$t \leq$ 3 min, without load (p \leq 725 psi (50 bar)), n \leq 1000 rpm
Permissible temperature difference		∆T ≤ 45 °F (25 °C)	between axial piston unit and hydraulic fluid
Warm-up phase	v < 7400 to 1850 (1600 to 400)	T = -40 °F to -13 °F (-40 °C to -25 °C)	at $p_{nom},0.5$ • $n_{nom}andt\leq 15min$
Operating phase			
Temperature difference		$\Delta T = approx. 9 °F$ (5 °C)	between hydraulic fluid in the bearing and the case drain fluids at port T.
Maximum temperature		240 °F (115 °C)	in bearing
		230 °F (110 °C)	measured at port T
Continuous operation	v = 1850 to 60 (400 to 10) $v_{opt} = 80 \text{ to } 170$ (16 to 36)	T = -13 °F to +195 °F (-25 °C to +90 °C)	measured at port T, no restriction within the permissible data
Short-term operation	$v_{min} = < 60 \text{ to } 42$ (10 to 5)	T _{max} = +230 °F (+110 °C)	measured at port T, t < 3 min, p < 0.3 \cdot p_{nom}
Shaft seal ring FKM ¹⁾		T ≤ +240 °F (+115 °C)	see page 5

 At temperatures below -13 °F (-25 °C), an NBR shaft seal ring is required (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

Filtration of the hydraulic fluid

Filtration improves the cleanliness level of the hydraulic fluid, which, in turn, increases the service life of the axial piston unit.

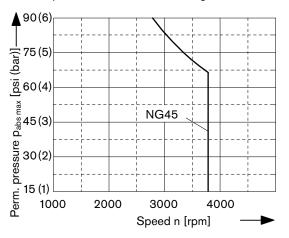
To ensure the functional reliability of the axial piston unit, a gravimetric evaluation is necessary for the hydraulic fluid to determine the amount of contamination by solid matter and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

Depending on the system and the application, for the A20VG and A22VG, we recommend

Filter cartridges $\beta_{20} \ge 100$.

With an increasing differential pressure at the filter cartridges, the β -value must not deteriorate.

At very high hydraulic fluid temperatures 195 °F to maximum 240 °F (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal ring

Permissible pressure loading

The service life of the shaft seal ring is affected by the speed of the pump and the case drain pressure. It is recommended that the average, continuous case drain pressure 45 psi (3 bar) absolute at operating temperature not be exceeded (maximum permissible case drain pressure 90 psi (6 bar) absolute at reduced speed, see diagram). Short-term (t < 0.1 s) pressure spikes of up to 145 psi (10 bar) absolute are permitted. The service life of the shaft seal ring decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or greater than the external pressure on the shaft seal ring.

Temperature range

The FKM shaft seal ring may be used for case drain temperatures from -13 °F to +240 °F (-25 °C to +115 °C).

Note

For application cases below -13 °F (-25 °C), an NBR shaft seal ring is necessary (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

State NBR shaft seal ring in plain text when ordering. Please contact us.

Operating pressure range

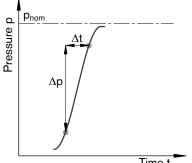
Variable double pump A20VG

Pressure at service line port A or B

Nominal pressure pnom	4350 psi (300 bar) absolute
Maximum pressure p _{max}	5100 psi (350 bar) absolute
Single operating period _	10 s
Total operating period	300 h

Variable double pump A22VG

Pressure at service line port A or B


Nominal pressure pnom	5100 psi (350 bar) absolute
Maximum pressure pmax	x 6100 psi (420 bar) absolute
Single operating period	10 s
Total operating period	300 h

Variable double pump A20VG and A22VG

Minimum pressure (high-pressure side) ____ 365 psi (25 bar)

Minimum pressure (inlet) _145 psi (10 bar) (boost pressure setting must be higher depending on system)

Rate of pressure change RA max _ 130000 psi/s (9000 bar/s)

Time t

Boost pump

Pressure at suction port S

$\begin{array}{l} \text{Duration } p_{\text{S min}} \left(\nu \leq 140 \text{ SUS} \right) \\ \left(\left(\nu \leq 30 \text{ mm}^2 \text{/s} \right) \right) \\ \text{at cold starts, short-term (t < 3 min)} \\ \text{Maximum } p_{\text{S max}} \\ \end{array}$	\geq 0.8 bar absolute) \geq 7.5 psi (0.5 bar) absolute
Nominal pressure p _{Sp nom} Maximum pressure p _{Sp max}	365 psi (25 bar) 580 psi (40 bar)
Control pressure To ensure the function of the contro pressure is required depending on t pressure:	, 0
For controls EP and HW Minimum control pressure p _{St min} (at n = 2000 rpm)	260 psi (18 bar)
For controls ET and HT Minimum control pressure p _{St min} (at n = 2000 rpm)	365 psi (25 bar)

Definition

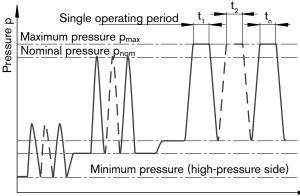
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating period must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure on the high-pressure side (A or B) that is required in order to prevent damage to the axial piston unit.

Minimum pressure (inlet)

Minimum pressure in inlet (A or B) that is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.

Time t

Total operating period = t1 + t2 + ... + tn

Size				NG		45
Displacement	variable pump (for each rotary group)			V _{g max}	in ³	2.81
geometrical, per revolution					cm ³	46
	boost pump (at p = 290 psi (20 bar))			V _{g Sp}	in ³	0.91
					cm ³	14.9
Speed	at $V_{g max}$	(n _{nom}	rpm	3300
	limited r	naximum ¹⁾		n _{max limited}	rpm	3550
	intermitt	ent maximum ²	2)	n _{max interm.}	rpm	3800
	minimur	n		n _{min}	rpm	500
Flow	at n _{nom} a	and $V_{g max}$		q _{v max}	gpm	2 x 40
					l/min	2 x 152
Power ³⁾	at n _{nom} ,	$V_{g max}$ and				
		for A20VG	$\Delta p = 4350 \text{ psi}$	P _{max}	hp	204
			$\Delta p = 300 \text{ bar}$	P _{max}	kW	152
		for A22VG	$\Delta p = 5100 \text{ psi}$	P _{max}	hp	239
			$\Delta p = 350 \text{ bar}$	P _{max}	kW	177
Torque ³⁾	at $V_{g max}$ and					
		for A20VG	$\Delta p = 4350 \text{ psi}$	T _{max}	lb-ft	324
			$\Delta p = 300 \text{ bar}$	T _{max}	Nm	439
		for A22VG	$\Delta p = 5100 \text{ psi}$	T _{max}	lb-ft	380
			$\Delta p = 350 \text{ bar}$	T _{max}	Nm	512
			∆p = 1450 psi	Т	lb-ft	108
			$\Delta p = 100 \text{ bar}$	Т	Nm	146
Rotary stiffness	drive sh	drive shaft S7		С	lb-ft/rad	54435
					Nm/rad	73804
Moment of inertia	rotary g	roup 1		J _{GR}	lb-ft ²	0.078951
					kgm ²	0.003327
	rotary g	roup 2		J _{GR}	lb-ft ²	0.078144
					kgm²	0.003293
Maximum angular acceleration	on for eac	h rotary group	4)	α	rad/s ²	4000
Filling capacity				V	gal	0.4
					L	1.7
Mass approx. (without throug	gh drive)			m	lbs	121
					kg	55

Table of values (theoretical values, without efficiency and tolerances; values rounded)

1) Limited maximum speed: At half corner power (e. g. at $V_{g\mbox{ max}}$ and p_{nom} /2)

2) Intermittent maximum speed:

At high idle speed

– At overspeed: Δp = 1000 to 2200 psi (70 to 150 bar) and V_{g max}

- At reversing peaks: $\Delta p < 4350$ psi (300 bar) and t < 5 sec.

3) Without boost pump

4) The area of validity lies between the minimum required and maximum permissible speed.

It applies for external stimuli (e. g. engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency).

The limit value applies for a single pump only.

The load capacity of the connection parts must be considered.

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible radial and axial loading on drive shaft

Size		NG		45
Drive shaft			in	1 1/4
Radial force maximum	Fa	F _{q max}	lb	717
at distance a			Ν	3190
(from shaft collar)	a	а	in	0.94
			mm	24
Axial force maximum	Fax ±	± F _{ax max}	lb	337
			Ν	1500

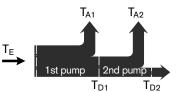
Note

Special requirements apply in the case of belt drives. Please contact us.

Force-transfer direction of the permissible axial force:

+ Fax max = Increase in service life of bearings

- Fax max = Reduction in service life of bearings (avoid)


Permissible input and through-drive torques

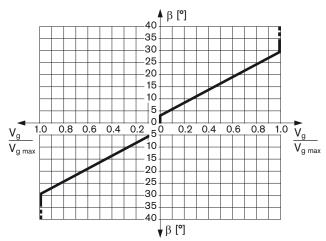
Size			NG		45
Torque ¹⁾ at $V_{g max}$ and for A20VG Δp		$\Delta p = 4350 \text{ psi}$	T _{max}	lb-ft	324
		$(\Delta p = 300 \text{ bar})$		Nm	439
	for A22VG	$\Delta p = 5100 \text{ psi}$	T _{max}	lb-ft	378
		$(\Delta p = 350 \text{ bar})$		Nm	512
Input torque at drive sh	aft maximum ²⁾				
	S7	1 1/4 in	T _{E max}	lb-ft	444
				Nm	602
Maximum through-drive	torque		T _{D1 max}	lb-ft	221
				Nm	300
			T _{D2 max}	lb-ft	$T_{D2 perm} = 221 - T_{A2}$
				Nm	$T_{D2 perm} = 300 - T_{A2}$

1) Efficiency not considered

2) For drive shafts with no radial force

Torque distribution

Determining the size


Flow $q_v = V_g \cdot n \cdot \eta_v$	[gpm]	$\left(\begin{array}{c} V_{g} \bullet n \bullet \eta_{v} \end{array} \right)$ [l/min])	V_{g}	= Displacement per revolution in in ³ (cm ³)
231		\ 1000	1	Δ_{p}	= Differential pressure in psi (bar)
Torque T = $V_g \cdot \Delta p$	[lb-ft]	$\int \frac{V_g \cdot \Delta p}{1}$ [Nm])	n	= Speed in rpm
24 • π • η _{mh}		20 • π • η _{mh}	1	η_{v}	= Volumetric efficiency
Power P = $\frac{2 \pi \cdot T \cdot n}{2 \pi \cdot T \cdot n}$ =	q _ν • Δp [hp]	$\int \frac{2\pi \cdot T \cdot n}{2\pi \cdot T \cdot n} = \frac{q_{v} \cdot \Delta p}{2\pi \cdot p}$	– [kW])	η_{mh}	= Mechanical-hydraulic efficiency
33000	1714 • η _t	60000 600 • η _t		$\boldsymbol{\eta}_t$	= Total efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

HW - Proportional control hydraulic, mechanical servo

The output flow of the pump can be steplessly varied in the range between 0 to 100 %, proportional to the rotation of the control lever between 0° and $\pm 29^{\circ}$.

A feedback lever connected to the stroke piston maintains the pump flow for any given position of the control lever between 0° and 29°.

If the pump is also equipped with a DA control valve (see page 15), automotive operation is possible for travel drives.

Swivel angle β at the control lever for deflection:

Start of control at $\beta = 3^{\circ}$

End of control at $\beta = 29^{\circ}$ (maximum displacement V_{g max})

Mechanical stop for β : ±40°

The maximum required torque at the lever is 15 lb-in (170 Ncm). To prevent damage to the HW control unit, a positive mechanical stop must be provided for the HW control lever.

Circuit diagram

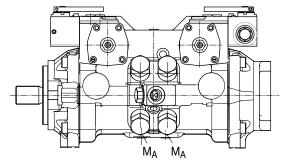
. MX MB B RΤ GB MB R XM MA W X2 X2 X1 X1 MA MG MA A A

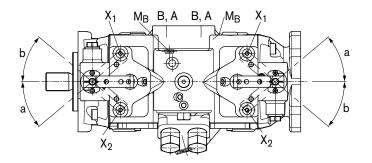
Note

Spring centering enables the pump, depending on pressure and speed, to move automatically to the neutral position $(V_g = 0)$ as soon as there is no longer any torque on the control lever of the HW control unit (regardless of deflection angle).

Variation: Neutral position switch

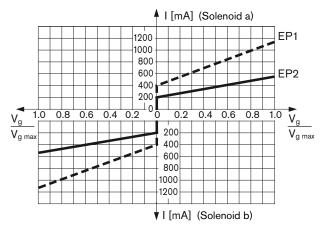
The switch contact in the neutral position switch is closed when the control lever on the HW control unit is in its neutral position. The switch opens if the control lever is moved out of neutral in either direction.


Thus, the neutral position switch provides a monitoring function for drive units that require the pump to be in the neutral position during certain operational states (e. g. starting diesel engines).


Technical data, neutral position switch						
Load capacity	20 A (continuous), without switching operating					
Switching capacity	15 A / 32 V (ohmic load)					
	4 A / 32 V (inductive load)					
Connector version	DEUTSCH DT04-2P-EP04 (for mating connector, see page 25)					

HW - Proportional control hydraulic, mechanical servo

	Direction of rotation - Control - Flow direction										
		Pur	np 1			Pu	mp 2				
Direction of rotation	cloc	wise	counter-	clockwise	cloc	kwise	counter-	clockwise			
Lever direction	a	b	а	b	a	b	a	b			
Control pressure	X ₂	X ₁	X ₂	X ₁	X ₁	X ₂	X ₁	X ₂			
Flow direction	B to A	A to B	A to B	B to A	A to B	B to A	B to A	A to B			
Operating pressure	M _A	M _B	M _B	M _A	M _B	M _A	M _A	M _B			


EP - Proportional control electric

The output flow of the pump can be steplessly varied in the range between 0 to 100 %, in proportional to the electrical current supplied to solenoid a or b.

The electrical energy is converted into a force acting on the control piston. This control piston then directs control hydraulic fluid into and out of the stroke cylinder to adjust pump displacement as required.

A feedback lever connected to the stroke piston maintains the pump flow for any given current within the control range.

If the pump is also equipped with a DA control valve (see page 15), automotive operation is possible for travel drives.

Standard

Proportional solenoid without emergency actuation.

On request

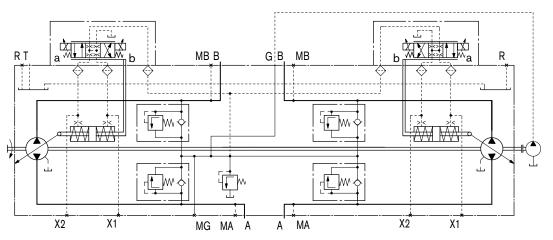
Proportional solenoid with emergency actuation and spring return.

Technical data, solenoid	EP1	EP2				
Voltage	12 V (±20 %)	24 V (±20 %)				
Start of control at V _{g 0}	400 mA	200 mA				
End of control at $V_{g max}$	1115 mA	560 mA				
Limiting current	1.54 A	0.77 A				
Nominal resistance at 68 °F (at 20 °C)	5.5 Ω	22.7 Ω				
Dither frequency	100 Hz	100 Hz				
Actuated time	100 %	100 %				
Type of protection see connector design, page 25						

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS controller RC

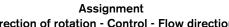
Series 20	RE 95200
Series 21	RE 95201
Series 22	RE 95202
Series 30	RE 95203
and application software	
- Analog amplifier RA	RE 95230

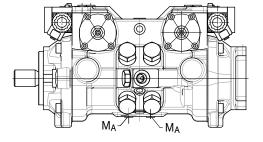

Further information can also be found on the Internet at: www.boschrexroth.com/mobile-electronics.

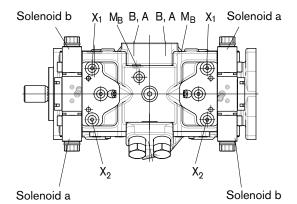
Note

The spring return feature in the control unit is not a safety device

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.


Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a neutral position (e. g. immediate stop).




Circuit diagram

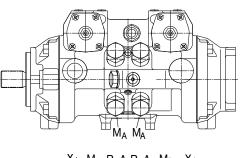
EP – Proportional control electric

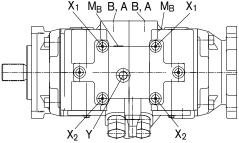
		Directio		- Control - F	low directior	ı		
		Pur	np 1			Pu	mp 2	
Direction of rotation	cloc	kwise	counter-	clockwise	cloc	kwise	counter	-clockwise
Actuation of solenoid	а	b	a	b	a	b	a	b
Control pressure	X ₂	X ₁	X ₂	X ₁	X ₁	X ₂	X ₁	X ₂
Flow direction	A to B	B to A	B to A	A to B	B to A	A to B	A to B	B to A
Operating pressure	M _B	M _A	M _A	MB	M _A	M _B	M _B	M _A

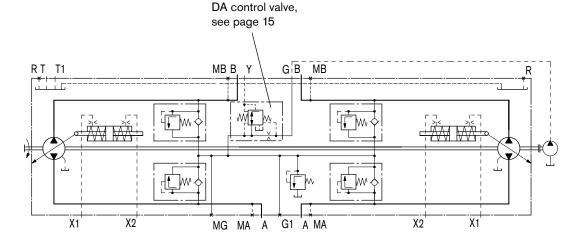
HT - Hydraulic control, direct controlled

With the direct-controlled hydraulic control (HT), pump displacement is influenced by a hydraulic control pressure applied directly to the stroke piston through either port X_1 or X_2 .

The flow direction is dependent on which control pressure port is pressurized.


Pump displacement is steplessly variable and proportional to the applied control pressure, but is also influenced by system pressure and pump drive speed.

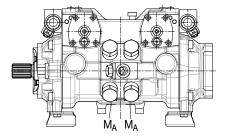

Maximum permissible control pressure: 580 psi (40 bar)

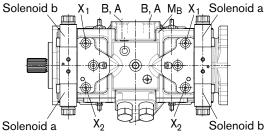

Use of the HT control requires a review of the engine and vehicle parameters to ensure that the pump is set up correctly. We recommend that all HT applications be reviewed by a Rexroth application engineer.

The DA control valve is only effective if the pilot control device for actuating the HT control is powered from port Y.

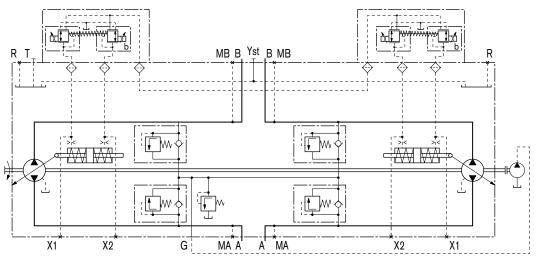
Circuit diagram

Assignment Direction of rotation - Control - Flow direction


		Pump 1				Pump 2			
Direction of rotation	clo	ockwise	ckwise counter-clockwise		clo	clockwise		counter-clockwise	
Control pressure	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	
Flow direction	B to A	A to B	A to B	B to A	B to A	A to B	A to B	B to A	
Operating pressure	M _A	MB	MB	M _A	M _A	MB	MB	M _A	
Mechanical stroke limiter for forward drive on the side of		X ₁		X ₁		X ₁		X ₁	


Note

Port for forward drive via X₂ for clockwise rotation.


ET - Electric control, direct controlled

The output flow of the pump can be steplessly varied in the range between 0 to 100 %. Depending on the preselected current I (mA) at the solenoids a and b of the pressure reduction valve, the stroke cylinder of the pump is supplied proportional with control pressure. The pump displacement that results from a certain control current is dependent on the speed and operating pressure of the pump. A different flow direction is associated with each pressure reduction valve.

Circuit diagram

Assignment Direction of rotation - Control - Flow direction

		Pur	np 1		Pump 2			
Direction of rotation	clocl	clockwise counter-clockwise		clockwise		counter-clockwise		
Actuation of solenoid	a	b	a	b	a	b	a	b
Control pressure	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂
Flow direction	B to A	A to B	A to B	B to A	B to A	A to B	A to B	B to A
Operating pressure	M _A	M _B	M _B	M _A	M _A	M _B	MB	M _A
Mechanical stroke limiter for forward drive on the side of		X ₁		X ₁		X ₁		X ₁

Note

Port for forward drive via X₂ for clockwise rotation.

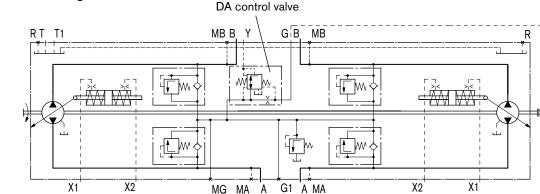
DA control valve, fixed setting

Speed related pilot pressure supply

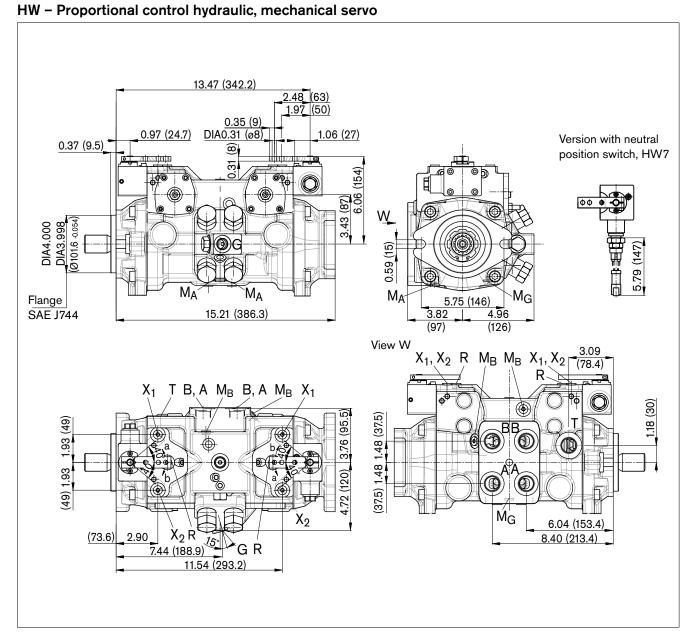
The DA closed loop control is an engine speed-dependent system for travel drives. The built-in DA control valve generates a pilot pressure that is proportional to pump (engine) drive speed. This pilot pressure is directed to the stroke cylinder of the pump by an electromagnetically actuated 4/3-directional valve. The pump displacement can be steplessly varied in each flow direction and is influenced by both the speed of the pump drive and the system pressure. The flow direction (i. e. machine moving forwards or backwards) is determined by either solenoid a or b being activated.

Increasing the drive speed of the pump generates a higher pilot pressure from the DA control valve resulting in increased flow and/or delivery pressure from the pump.

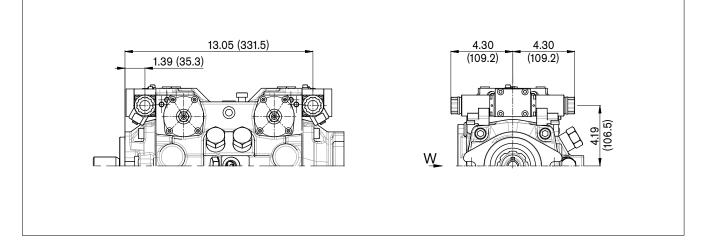
Depending on the selected operating characteristics of the pump, increasing the system pressure (i. e. machine load) will have the effect of swiveling the pump back to a smaller displacement. An overload protection circuit for the engine (against stalling) is achieved by combining this pressuredependent reduction in pump stroke with a reduction in pilot pressure as the engine speed drops.

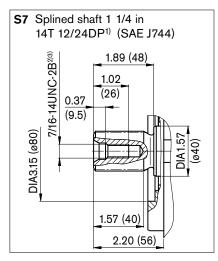

Any additional power requirement, e. g. hydraulic functions from attachments, could cause the speed of the engine to drop further. This will cause a further reduction in pilot pressure and thus of the pump displacement. Automatic power distribution and full exploitation of the available power are achieved in this way, both for the travel drive and for the implement hydraulics, with priority given to the implement hydraulics.

Circuit diagram


Various override options are available for the DA control function to allow controlled operation of the implement hydraulics with high rpm at reduced vehicle speed.

The DA control valve can also be used in pumps with HT, EP and HW control units to protect the combustion engine against overload.


DA closed loop control is only suitable for certain types of drive system and requires review of the engine and vehicle parameters to ensure that the pump is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Rexroth application engineer.


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

EP – Proportional control electric

Drive shaft

Ports

Designation	Port for	Standard ⁶⁾	Size [in] ³⁾	Maximum p [psi (bar)] ⁴⁾	State	
				A20VG	A22VG	
А, В	Service line	ISO 11926	1 1/16-12 UN-2B; 0.79 deep	5100 (350)	6100 (420)	0
Т	Case drain fluid	ISO 11926	1 1/16-12 UN-2B; 0.79 deep	45 (3)	45 (3)	0
R	Air bleed	ISO 11926	9/16-18 UNF-2B; 0.51 deep	45 (3)	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18 UNF-2B; 0.51 deep	580 (40)	580 (40)	Х
X ₃ , X ₄ ⁵⁾	Stroking chamber pressure	ISO 11926	7/16-20 UNF-2B; 0.47 deep	580 (40)	580 (40)	Х
G	Pressure port for auxiliary circuits	ISO 11926	3/4-16 UNF-2B; 0.59 deep	580 (40)	580 (40)	0
M _G	Measuring service line G	ISO 11926	9/16-18 UNF-2B; 0.51 deep	580 (40)	580 (40)	Х
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18 UNF-2B; 0.51 deep	5100 (350)	6100 (420)	Х

1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5

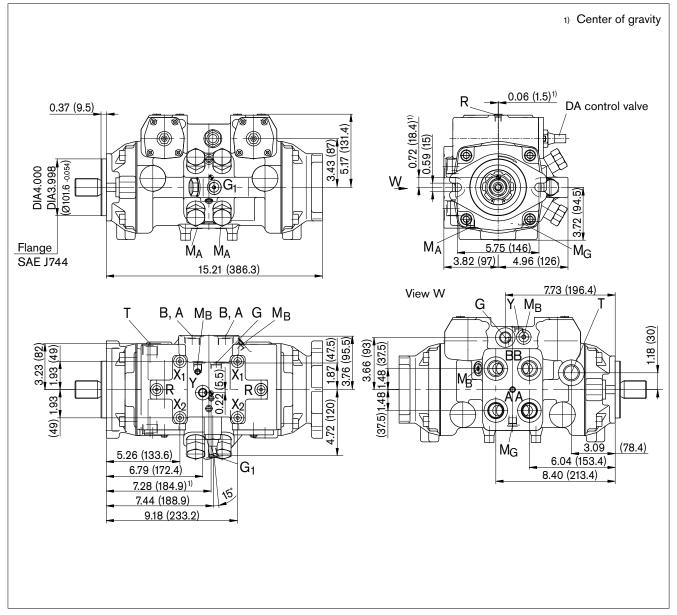
2) Thread according to ISO 68

3) Observe the general instructions on page 28 for the maximum tightening torques.

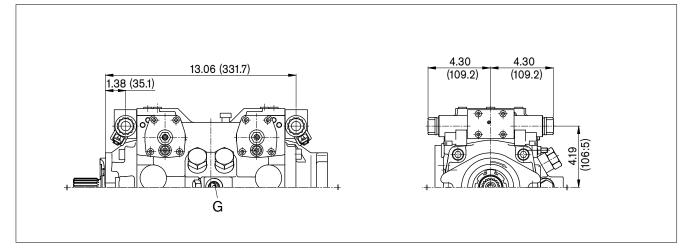
4) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Optional, see page 23

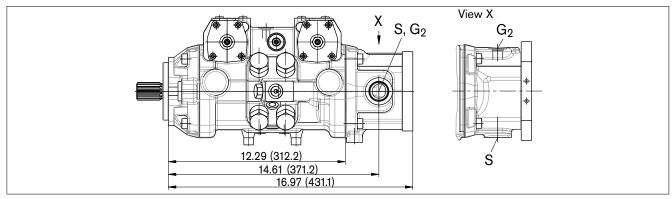
6) The spot face can be deeper than specified in the appropriate standard.


O = Must be connected (plugged on delivery)

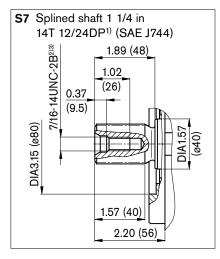
X = Plugged (in normal operation)


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).



ET - Electric control, direct controlled



Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Version with boost pump

Drive shaft

Ports

Designation	Port for	Standard ⁶⁾	Size [in] ³⁾	Maximum pressure [p	si (bar)] ⁴⁾	State
				A20VG	A22VG	
A, B	Service line	ISO 11926	1 1/16-12 UN-2B; 0.79 deep	5100 (350)	6100 (420)	0
S	Suction line	ISO 11926	1 5/16-12 UN-2B; 0.79 deep	75 (5)	75 (5)	0
Т	Case drain fluid	ISO 11926	1 1/16-12 UN-2B; 0.79 deep	45 (3)	45 (3)	0
R	Air bleed	ISO 11926	7/16-20 UNF-2B; 0.47 deep	45 (3)	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	7/16-20 UNF-2B; 0.47 deep	580 (40)	580 (40)	0
X ₃ , X ₄ ⁵⁾	Stroking chamber pressure	ISO 11926	7/16-20 UNF-2B; 0.47 deep	580 (40)	580 (40)	Х
G, G ₂	Pressure port for auxiliary circuits	ISO 11926	3/4-16 UNF-2B; 0.59 deep	580 (40)	580 (40)	0
G ₁	Pressure port for auxiliary circuits	ISO 11926	9/16-18 UNF-2B; 0.51 deep	580 (40)	580 (40)	Х
M _G	Measuring service line G	ISO 11926	9/16-18 UNF-2B; 0.51 deep	580 (40)	580 (40)	Х
M_A, M_B	Measuring pressure A, B	ISO 11926	9/16-18 UNF-2B; 0.51 deep	5100 (350)	6100 (420)	Х
Y	Pilot pressure port	ISO 11926	9/16-18 UNF-2B; 0.51 deep	580 (40)	580 (40)	Х

1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5

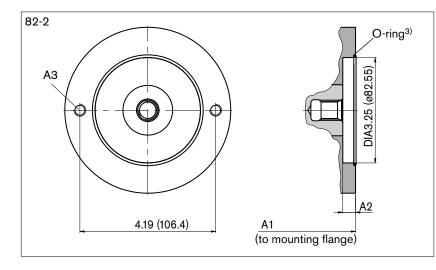
2) Thread according to ISO 68

5) Optional, see page 23

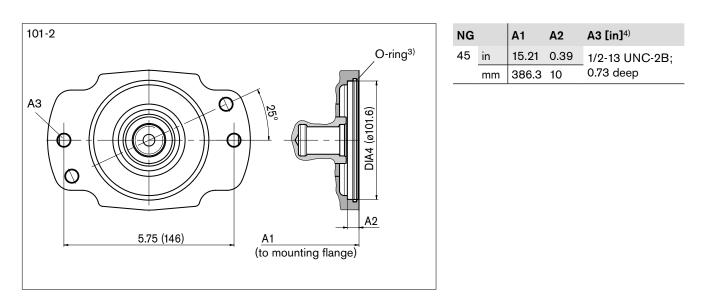
6) The spot face can be deeper than specified in the appropriate standard.

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


³⁾ Observe the general instructions on page 28 for the maximum tightening torques.

⁴⁾ Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.


Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Flange SAE J744			Coupling for splined sha	aft ¹⁾		
	Mounting var	iant				
Diameter	Symbol ²⁾	Designation	Diameter	Designation		
Without					-	0000
82-2 (A)	<u>~~</u>	A2	5/8 in 9T 16/32DP	S2	•	A2S2
101-2 (B)	<u>~~</u>	B2	7/8 in 13T 16/32DP	S4	•	B2S4
			1 in 15T 16/32DP	S5	•	B2S5

NG		A1	A2	A3 [in] ⁴⁾
45	in	14.85	0.39	3/8-16 UNC-2B;
	mm	377.2	10	0.69 deep

1) Coupling for splined shaft according to ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5

2) Order of fixing bores viewed from through drive

3) O-ring included in the delivery contents

4) Thread according to ISO 68, observe the general instructions on page 28 for the maximum tightening torques.

Overview of attachments

Through d	rive		Attachment – 2nd pump			
Flange	Coupling for splined shaft	Short code	AA10VG NG (shaft)	A10V(S)O/53 NG (shaft)	External gear pump	
82-2 (A)	5/8 in	A2S2	-	10 (U)	Size F NG4 to 22 ¹⁾	
101-2 (B)	7/8 in	B2S4	18 (S)	28 (S, R) 45 (U, W)	Size N NG20 to 32 ¹⁾ Size G NG38 to 45 ¹⁾	
	1 in	B2S5	28 (S), 45 (S)	45 (S, R) 60 (U, W)	_	

1) Rexroth recommends special versions of the gear pumps. Please contact us.

Combination pumps

By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes.

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+".

Order example:

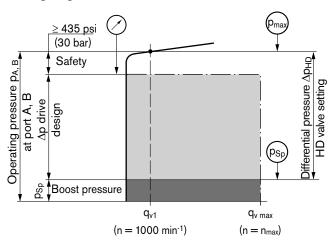
A20VG045HT100100/11ARNB2S73UB2S4A-0 + AZPN....

The A20VG/A22VG variable double pump is permissible without additional supports where the dynamic acceleration does not exceed maximum 10 g = 322 ft/s² (= 98.1 m/s²). When mounting another pump on the A20VG/A22VG, the mounting flange must be rated for the permissible mass torque.

Boost pump

The boost pump permanently feeds a sufficient volume of fluid (feed volume) from the reservoir to the low-pressure side of the closed circuit via a check valve to compensate for internal leakage within the variable pump and consumers.

The boost pump is an internal gear pump that is driven directly via the drive shaft.


The pressure port G_2 on the boost pump must be externally connected by pipe with port G by the customer. Suction or pressure filtration must be provided by the customer.

High-pressure relief valves

The two high-pressure relief valves protect the hydrostatic transmission (pump and motor) from overload. They limit the maximum pressure in the respective high-pressure line and serve simultaneously as boost valves.

High-pressure relief valves are not working valves and are only suitable for pressure spikes or high rates of pressure change.

Setting diagram

When ordering, state differential pressure setting in plain text: The differential pressure setting is preset in the range $\Delta p = 3600$ to 4650 psi (250 to 320 bar) (A20VG) and $\Delta p = 3600$ to 5650 psi (250 to 390 bar) (A22VG) in steps of 145 psi (10 bar).

If not specified in the order, the valves are set to $\Delta p = 4100 \text{ psi} (280 \text{ bar}) (A20 \text{VG}) \text{ and}$

 $\Delta p = 4800 \text{ psi} (330 \text{ bar}) (A22VG).$

High-pressure relief valve A (for pump 1 and 2)

Differential pressure setting $\Delta p_{HD} = ... psi$ (bar)

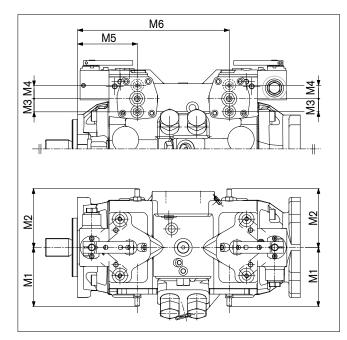
Opening pressure of the HD valve (at $q_V _1$)_ $p_{max} = ... psi$ (bar) ($p_{max} = \Delta p_{HD} + p_{Sp}$)

High-pressure relief valve B (for pump 1 and 2) Differential pressure setting $___ \Delta p_{HD} = ... psi$ (bar)

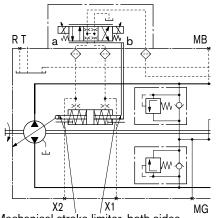
Opening pressure of the HD valve (at $q_V _1$)_ $p_{max} = ... psi$ (bar) ($p_{max} = \Delta p_{HD} + p_{Sp}$)

Note

The valve settings are made at n = 1000 rpm and at $V_{g \text{ max}}(q_{v 1})$. There may be deviations in the opening pressures with other operating parameters.

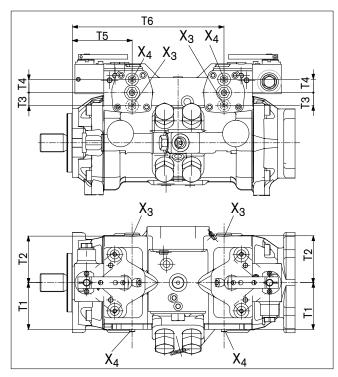

Mechanical stroke limiter

The mechanical stroke limiter is an auxiliary function allowing the maximum displacement of the pump to be steplessly reduced, regardless of the control unit used.

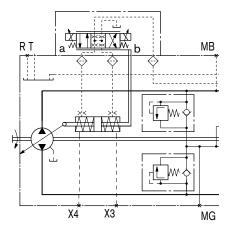

The stroke of the stroke cylinder and hence the maximum swivel angle of the pump are limited by means of two adjusting screws.

Dimensions

NG		M1	M2	M3	M4	M5	M6
45	in	3.82	4	0.89	0.89	4.08	10.36
	mm	97	101.5	22.5	22.5	103.6	263.2



Circuit diagram



Ports X₃ and X₄ for stroking chamber pressure

NG			T2		•••	T5	T6
45	in	3.13	3.11	0.93	0.83	4.08	10.36
	mm	79.5	79	23.5	21	103.6	263.2

Circuit diagram

Mechanica	l stroke	limiter,	both s	sides

Designation	Port for	Standard ³⁾	Size [in] ¹⁾	Maximum pressure [psi (bar)] ²⁾ Stat		State
				A20VG	A22VG	
X ₃ , X ₄	Stroking chamber pressure	ISO 11926	7/16-20 UNF-2B; 0.47 deep	580 (40)	580 (40)	Х

1) Observe the general instructions on page 28 for the maximum tightening torques.

2) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 3) The spot face can be deeper than specified in the appropriate standard.

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Sensors

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Electric swivel angle sensor

For the swivel angle indicator, the pump swivel position is measured by an electric swivel angle sensor.

As an output parameter, the Hall effect swivel angle sensor delivers a voltage proportional to the swivel angle (see table of output voltages).

The swivel angle sensor is suitable for swivel angle monitoring. Please contact us if the swivel angle sensor is used for control.

Characteristics

onaracteristics			
Supply voltage U_{b}	10 to 30 V	/ DC	
Output voltage U _a	1 V (V _{g max})	2.5 V (V _{g 0})	4 V (V _{g max})
Reverse-connect protection	Short circ	uit-resistan	t
EMC resistance	Details on	request	
Operating temperature range	-40 °F to - (-40 °C to		
Vibration resistance sinusoidal vibration EN 60068-2-6	10 <i>g </i> 5 to	2000 Hz	
Shock resistance continuous shock IEC 68-2-29	25 <i>g</i>		
Resistance to salt spray DIN 50 021-SS	96h		
Type of protection DIN/EN 60529	IP67 and I	IP69K	
Case material	Plastic		

Output voltage

	Flow direction ¹⁾	Operating pressure	Output voltage
otation	B to A	M _A	> 2.5 V
of rot	A to B	M _B	< 2.5 V
Direction of rotation	A to B	M _B	> 2.5 V
Dire	B to A	M _A	< 2.5 V

View V not to scale Supply

View W

Supply Ground voltage U_b Output voltage U_a

٧

11.46 (291)

2.98

(75.8)

Mating connector

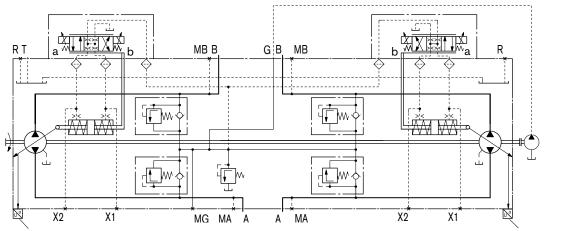
Dimensions

W

(123)

84

4


DEUTSCH DT06-3S-EP04, Rexroth Mat. No. R902603524

Consisting of:	DT designation
- 1 case	DT06-3S-EP04
– 1 wedge	W3S
- 3 female connectors	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Rexroth on request.

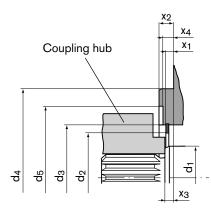
1) For flow direction, see controls

Circuit diagram

Electric swivel angle sensor

Electric swivel angle sensor

Installation situation for coupling assembly


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

To ensure that rotating components (coupling hub) and fixed components (case, retaining ring) do not come into contact with each other, the installation conditions described here must be observed. This depends on the size and the splined shaft.

SAE splined shaft (spline according to ANSI B92.1a-1976)

The outer diameter of the coupling hub must be smaller than the inner diameter of the retaining ring d_2 in the area near the drive shaft collar (dimension $x_2 - x_3$).

Please observe diameter d_5 of the free turning.

NG	Mounting flange		ød ₁		ød ₃	ød4		x ₁	x ₂	x ₃ (approx.)	x ₄
45	101-2 (B)	in	1.57	2.02	2.48 ±0.004	4	3.15	0.169	0.374 -0.02	0.28	0.315 -0.024
		mm	40	51.4	63 ±0.1	101.6	80	4.3	9.5 _{-0.5}	7	8 -0.6

Connector for solenoids

DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bidirectional suppressor diode	P
Type of protection according to DIN/EN 60529	_IP67

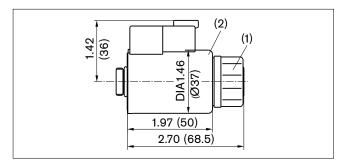
Type of protection according to DIN 40050-9 _____IP69K

Circuit symbol

Without bidirectional suppressor diode

Mating connector

DEUTSCH DT06-2S-EP04 Rexroth Mat. No. R902601804


Consisting of:

- 1 case _____ DT06-2S-EP04

DT designation

- 1 wedge ______W2S
- 2 female connectors _____0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Rexroth on request.

Changing connector position

If necessary, you can change the position of the connector by turning the solenoid.

To do this, proceed as follows:

- 1. Loosen the fixing nut (1) of the solenoid. To do this, turn the fixing nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired position.
- Retighten the fixing nut. Tightening torque of the fixing nut: 3.7+0.7 lb-ft (5+1 Nm) (WAF1.02 (26), 12-sided DIN 3124)

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the axial piston unit may empty via the hydraulic lines.

The case drain fluid in the pump case must be directed to the tank via the highest tank port (T).

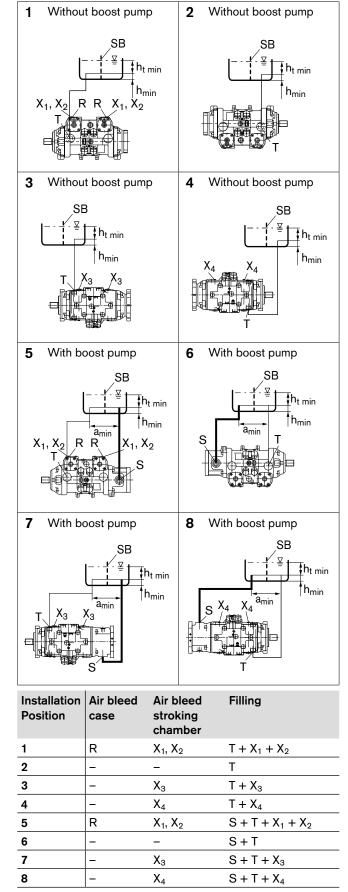
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and case drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height h_S results from the overall loss of pressure, it must not, however, be higher than $h_{S max} = 31.5$ in (800 mm). The minimum suction pressure at port S must also not fall below 12 psi (0.8 bar) absolute during operation (cold start 7.5 psi (0.5 bar) absolute).

Installation Position

See the following examples 1 to 16. Additional installation positions are available upon request.

Recommended installation position:

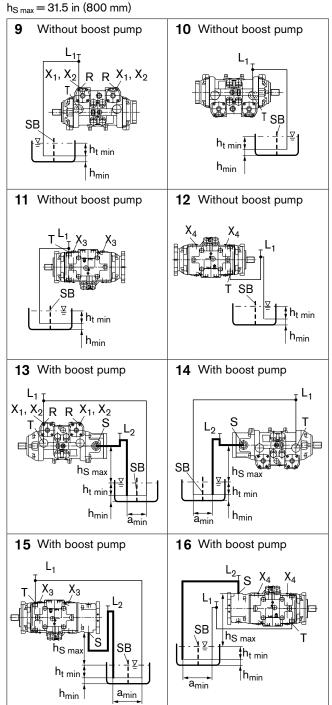

- Without boost pump 1 and 2.
- With boost pump 5 and 6

Note

- If a filling of the stroking chambers via X1 to X4 in the finalinstallation position is not possible, then this must be effected before installation.
- To prevent unexpected actuation and damage, the stroking chambers must be air bled via the ports X1, X2, and/or X3, X4 in accordance with the installation positions.

Below-tank installation (standard)

Below-tank installation is when the axial piston unit is installed outside of the tank below the minimum fluid level.


Observe the notes!

Installation instructions

Above-tank installation

Above-tank installation is when the axial piston unit is installed above the minimum fluid level of the tank.

Observe the maximum permissible suction height

Installation Position	Air bleed case	Air bleed stroking chamber	Filling
9	R	X ₁ , X ₂	$L_1 + X_1 + X_2$
10	L ₁	-	L ₁
11	L ₁ (T)	X ₃	$L_1(T) + X_3$
12	L ₁	X ₄	$L_1 + X_4$
13	$R + L_2 (S)$	X ₁ , X ₂	$L_1 + L_2 (S) + X_1 + X_2$
14	$L_{1} + L_{2} (S)$	-	$L_1 + L_2 (S)$
15	$L_{1}(T) + L_{2}$	X ₃	$L_1(T) + L_2 + X_3$
16	$L_{1} + L_{2} (S)$	X ₄	$L_1 + L_2 (S) + X_4$

Observe the notes on page 26!

L	Filling / air bleed
R	Air bleed port
S	Suction port
т	Tank port
SB	Baffle (baffle plate)
h _{t min}	Minimum permissible immersion depth (7.87 in (200 mm))
h _{min}	Minimum permissible spacing to tank base (3.94 in (100 mm))
h _{S max}	Maximum permissible suction height (31.5 in (800 mm))
a _{min}	When designing the tank, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

General instructions

- The A20VG/A22VG pump is designed to be used in a closed circuit.
- Project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids.
 Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operational state of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports are only designed to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO13849.
- The following tightening torques apply:

- Fittings:

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

- Fixing screws:

For fixing screws according to DIN 13/ ISO 68 , we recommend checking the tightening torque individually according to VDI 2230.

- Threaded hole for axial piston unit:

The maximum permissible tightening torques $M_{G max}$ are maximum values for the threaded holes and must not be exceeded. For values, see the following table.

- Locking screws:

For the metal locking screws supplied with the axial piston unit, the required tightening torques of the locking screws M_V apply. For values, see the following table.

Ports Standard	Threaded sizes	Maximum permissible tightening torque of the threaded holes M _{G max}	Required tightening torque of the locking screws M _V	WAF hexagon socket for the locking screws
ISO 11926	7/16-20 UNF-2B	30 lb-ft	11 lb-ft	3/16 in
		40 Nm	15 Nm	
	9/16-18 UNF-2B	59 lb-ft	18 lb-ft	1/4 in
		80 Nm	25 Nm	
	3/4-16 UNF-2B	118 lb-ft	46 lb-ft	5/16 in
		160 Nm	62 Nm	
	1 1/16-12 UN-2B	266 lb-ft	108 lb-ft	9/16 in
		360 Nm	147 Nm	
	1 5/16-12 UN-2B	398 lb-ft	146 lb-ft	5/8 in
		540 Nm	198 Nm	

Bosch Rexroth Corporation Hydraulics Axial & Radial Piston Units 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com

© 2010 Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp.

The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet in no way relieves the user of its obligation to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.